Serveur d'exploration sur la maladie de Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Brain penetration effects of microelectrodes and DBS leads in STN or GPi

Identifieur interne : 000A51 ( Main/Corpus ); précédent : 000A50; suivant : 000A52

Brain penetration effects of microelectrodes and DBS leads in STN or GPi

Auteurs : J M Mann ; K D Foote ; C W Garvan ; H H Fernandez ; C E Jacobson ; R L Rodriguez ; I U Haq ; M S Siddiqui ; I A Malaty ; T. Morishita ; C J Hass ; M S Okun

Source :

RBID : ISTEX:49B97A2569F830C765A297499F274B05497DC861

Abstract

Objective: To determine how intraoperative microelectrode recordings (MER) and intraoperative lead placement acutely influence tremor, rigidity, and bradykinesia. Secondarily, to evaluate whether the longevity of the MER and lead placement effects were influenced by target location (subthalamic nucleus (STN) or globus pallidus interna (GPi)). Background: Currently most groups who perform deep brain stimulation (DBS) for Parkinson disease (PD) use MER, as well as macrostimulation (test stimulation), to refine DBS lead position. Following MER and/or test stimulation, however, there may be a resultant “collision/implantation” or “microlesion” effect, thought to result from disruption of cells and/or fibres within the penetrated region. These effects have not been carefully quantified. Methods: 47 consecutive patients with PD undergoing unilateral DBS for PD (STN or GPi DBS) were evaluated. Motor function was measured at six time points with a modified motor Unified Parkinson Disease Rating Scale (UPDRS): (1) preoperatively, (2) immediately after MER, (3) immediately after lead implantation/collision, (4) 4 months following surgery—off medications, on DBS (12 h medication washout), (5) 6 months postoperatively—off medication and off DBS (12 h washout) and (6) 6 months—on medication and off DBS (12 h washout). Results: Significant improvements in motor scores (p<0.05) (tremor, rigidity, bradykinesia) were observed as a result of MER and lead placement. The improvements were similar in magnitude to what was observed at 4 and 6 months post-DBS following programming and medication optimisation. When washed out (medications and DBS) for 12 h, UPDRS motor scores were still improved compared with preoperative testing. There was a larger improvement in STN compared with GPi following MER (p<0.05) and a trend for significance following lead placement (p<0.08) but long term outcome was similar. Conclusion: This study demonstrated significant acute intraoperative penetration effects resulting from MER and lead placement/collision in PD. Clinicians rating patients in the operating suite should be aware of these effects, and should consider pre- and post-lead placement rating scales prior to activating DBS. The collision/implantation effects were greater intraoperatively with STN compared with GPi, and with greater disease duration there was a larger effect.

Url:
DOI: 10.1136/jnnp.2008.159558

Links to Exploration step

ISTEX:49B97A2569F830C765A297499F274B05497DC861

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Brain penetration effects of microelectrodes and DBS leads in STN or GPi</title>
<author>
<name sortKey="Mann, J M" sort="Mann, J M" uniqKey="Mann J" first="J M" last="Mann">J M Mann</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Foote, K D" sort="Foote, K D" uniqKey="Foote K" first="K D" last="Foote">K D Foote</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Garvan, C W" sort="Garvan, C W" uniqKey="Garvan C" first="C W" last="Garvan">C W Garvan</name>
<affiliation>
<mods:affiliation>Office of Educational Research, College of Education, University of Florida, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fernandez, H H" sort="Fernandez, H H" uniqKey="Fernandez H" first="H H" last="Fernandez">H H Fernandez</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jacobson, C E" sort="Jacobson, C E" uniqKey="Jacobson C" first="C E" last="Jacobson">C E Jacobson</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez, R L" sort="Rodriguez, R L" uniqKey="Rodriguez R" first="R L" last="Rodriguez">R L Rodriguez</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Haq, I U" sort="Haq, I U" uniqKey="Haq I" first="I U" last="Haq">I U Haq</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Siddiqui, M S" sort="Siddiqui, M S" uniqKey="Siddiqui M" first="M S" last="Siddiqui">M S Siddiqui</name>
<affiliation>
<mods:affiliation>Department of Neurology, Wake Forest University, Winston Salem, North Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Malaty, I A" sort="Malaty, I A" uniqKey="Malaty I" first="I A" last="Malaty">I A Malaty</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morishita, T" sort="Morishita, T" uniqKey="Morishita T" first="T" last="Morishita">T. Morishita</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hass, C J" sort="Hass, C J" uniqKey="Hass C" first="C J" last="Hass">C J Hass</name>
<affiliation>
<mods:affiliation>Department of Applied Physiology and Kinesiology, University of Florida, Movement Disorders Center, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Okun, M S" sort="Okun, M S" uniqKey="Okun M" first="M S" last="Okun">M S Okun</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Neurosurgery, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:49B97A2569F830C765A297499F274B05497DC861</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1136/jnnp.2008.159558</idno>
<idno type="url">https://api.istex.fr/document/49B97A2569F830C765A297499F274B05497DC861/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000A51</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Brain penetration effects of microelectrodes and DBS leads in STN or GPi</title>
<author>
<name sortKey="Mann, J M" sort="Mann, J M" uniqKey="Mann J" first="J M" last="Mann">J M Mann</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Foote, K D" sort="Foote, K D" uniqKey="Foote K" first="K D" last="Foote">K D Foote</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Garvan, C W" sort="Garvan, C W" uniqKey="Garvan C" first="C W" last="Garvan">C W Garvan</name>
<affiliation>
<mods:affiliation>Office of Educational Research, College of Education, University of Florida, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fernandez, H H" sort="Fernandez, H H" uniqKey="Fernandez H" first="H H" last="Fernandez">H H Fernandez</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jacobson, C E" sort="Jacobson, C E" uniqKey="Jacobson C" first="C E" last="Jacobson">C E Jacobson</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez, R L" sort="Rodriguez, R L" uniqKey="Rodriguez R" first="R L" last="Rodriguez">R L Rodriguez</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Haq, I U" sort="Haq, I U" uniqKey="Haq I" first="I U" last="Haq">I U Haq</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Siddiqui, M S" sort="Siddiqui, M S" uniqKey="Siddiqui M" first="M S" last="Siddiqui">M S Siddiqui</name>
<affiliation>
<mods:affiliation>Department of Neurology, Wake Forest University, Winston Salem, North Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Malaty, I A" sort="Malaty, I A" uniqKey="Malaty I" first="I A" last="Malaty">I A Malaty</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morishita, T" sort="Morishita, T" uniqKey="Morishita T" first="T" last="Morishita">T. Morishita</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hass, C J" sort="Hass, C J" uniqKey="Hass C" first="C J" last="Hass">C J Hass</name>
<affiliation>
<mods:affiliation>Department of Applied Physiology and Kinesiology, University of Florida, Movement Disorders Center, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Okun, M S" sort="Okun, M S" uniqKey="Okun M" first="M S" last="Okun">M S Okun</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Neurosurgery, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Neurology, Neurosurgery & Psychiatry</title>
<title level="j" type="abbrev">J Neurol Neurosurg Psychiatry</title>
<idno type="ISSN">0022-3050</idno>
<idno type="eISSN">1468-330X</idno>
<imprint>
<publisher>BMJ Publishing Group Ltd</publisher>
<date type="published" when="2009-07">2009-07</date>
<biblScope unit="volume">80</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="794">794</biblScope>
</imprint>
<idno type="ISSN">0022-3050</idno>
</series>
<idno type="istex">49B97A2569F830C765A297499F274B05497DC861</idno>
<idno type="DOI">10.1136/jnnp.2008.159558</idno>
<idno type="href">jnnp-80-794.pdf</idno>
<idno type="ArticleID">jn159558</idno>
<idno type="PMID">19237386</idno>
<idno type="local">jnnp;80/7/794</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-3050</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Objective: To determine how intraoperative microelectrode recordings (MER) and intraoperative lead placement acutely influence tremor, rigidity, and bradykinesia. Secondarily, to evaluate whether the longevity of the MER and lead placement effects were influenced by target location (subthalamic nucleus (STN) or globus pallidus interna (GPi)). Background: Currently most groups who perform deep brain stimulation (DBS) for Parkinson disease (PD) use MER, as well as macrostimulation (test stimulation), to refine DBS lead position. Following MER and/or test stimulation, however, there may be a resultant “collision/implantation” or “microlesion” effect, thought to result from disruption of cells and/or fibres within the penetrated region. These effects have not been carefully quantified. Methods: 47 consecutive patients with PD undergoing unilateral DBS for PD (STN or GPi DBS) were evaluated. Motor function was measured at six time points with a modified motor Unified Parkinson Disease Rating Scale (UPDRS): (1) preoperatively, (2) immediately after MER, (3) immediately after lead implantation/collision, (4) 4 months following surgery—off medications, on DBS (12 h medication washout), (5) 6 months postoperatively—off medication and off DBS (12 h washout) and (6) 6 months—on medication and off DBS (12 h washout). Results: Significant improvements in motor scores (p<0.05) (tremor, rigidity, bradykinesia) were observed as a result of MER and lead placement. The improvements were similar in magnitude to what was observed at 4 and 6 months post-DBS following programming and medication optimisation. When washed out (medications and DBS) for 12 h, UPDRS motor scores were still improved compared with preoperative testing. There was a larger improvement in STN compared with GPi following MER (p<0.05) and a trend for significance following lead placement (p<0.08) but long term outcome was similar. Conclusion: This study demonstrated significant acute intraoperative penetration effects resulting from MER and lead placement/collision in PD. Clinicians rating patients in the operating suite should be aware of these effects, and should consider pre- and post-lead placement rating scales prior to activating DBS. The collision/implantation effects were greater intraoperatively with STN compared with GPi, and with greater disease duration there was a larger effect.</div>
</front>
</TEI>
<istex>
<corpusName>bmj</corpusName>
<author>
<json:item>
<name>J M Mann</name>
<affiliations>
<json:string>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>K D Foote</name>
<affiliations>
<json:string>Department of Neurosurgery, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>C W Garvan</name>
<affiliations>
<json:string>Office of Educational Research, College of Education, University of Florida, Gainesville, Florida, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>H H Fernandez</name>
<affiliations>
<json:string>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>C E Jacobson IV</name>
<affiliations>
<json:string>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>R L Rodriguez</name>
<affiliations>
<json:string>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>I U Haq</name>
<affiliations>
<json:string>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>M S Siddiqui</name>
<affiliations>
<json:string>Department of Neurology, Wake Forest University, Winston Salem, North Carolina, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>I A Malaty</name>
<affiliations>
<json:string>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>T Morishita</name>
<affiliations>
<json:string>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>C J Hass</name>
<affiliations>
<json:string>Department of Applied Physiology and Kinesiology, University of Florida, Movement Disorders Center, Gainesville, Florida, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>M S Okun</name>
<affiliations>
<json:string>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</json:string>
<json:string>Department of Neurosurgery, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Research papers</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Drugs: CNS (not psychiatric)</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Parkinson's disease</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>Objective: To determine how intraoperative microelectrode recordings (MER) and intraoperative lead placement acutely influence tremor, rigidity, and bradykinesia. Secondarily, to evaluate whether the longevity of the MER and lead placement effects were influenced by target location (subthalamic nucleus (STN) or globus pallidus interna (GPi)). Background: Currently most groups who perform deep brain stimulation (DBS) for Parkinson disease (PD) use MER, as well as macrostimulation (test stimulation), to refine DBS lead position. Following MER and/or test stimulation, however, there may be a resultant “collision/implantation” or “microlesion” effect, thought to result from disruption of cells and/or fibres within the penetrated region. These effects have not been carefully quantified. Methods: 47 consecutive patients with PD undergoing unilateral DBS for PD (STN or GPi DBS) were evaluated. Motor function was measured at six time points with a modified motor Unified Parkinson Disease Rating Scale (UPDRS): (1) preoperatively, (2) immediately after MER, (3) immediately after lead implantation/collision, (4) 4 months following surgery—off medications, on DBS (12 h medication washout), (5) 6 months postoperatively—off medication and off DBS (12 h washout) and (6) 6 months—on medication and off DBS (12 h washout). Results: Significant improvements in motor scores (p>0.05) (tremor, rigidity, bradykinesia) were observed as a result of MER and lead placement. The improvements were similar in magnitude to what was observed at 4 and 6 months post-DBS following programming and medication optimisation. When washed out (medications and DBS) for 12 h, UPDRS motor scores were still improved compared with preoperative testing. There was a larger improvement in STN compared with GPi following MER (p>0.05) and a trend for significance following lead placement (p>0.08) but long term outcome was similar. Conclusion: This study demonstrated significant acute intraoperative penetration effects resulting from MER and lead placement/collision in PD. Clinicians rating patients in the operating suite should be aware of these effects, and should consider pre- and post-lead placement rating scales prior to activating DBS. The collision/implantation effects were greater intraoperatively with STN compared with GPi, and with greater disease duration there was a larger effect.</abstract>
<qualityIndicators>
<score>6.628</score>
<pdfVersion>1.5</pdfVersion>
<pdfPageSize>595.276 x 793.701 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>3</keywordCount>
<abstractCharCount>2383</abstractCharCount>
<pdfWordCount>2628</pdfWordCount>
<pdfCharCount>18004</pdfCharCount>
<pdfPageCount>4</pdfPageCount>
<abstractWordCount>338</abstractWordCount>
</qualityIndicators>
<title>Brain penetration effects of microelectrodes and DBS leads in STN or GPi</title>
<pmid>
<json:string>19237386</json:string>
</pmid>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>80</volume>
<pages>
<first>794</first>
</pages>
<issn>
<json:string>0022-3050</json:string>
</issn>
<issue>7</issue>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1468-330X</json:string>
</eissn>
<title>Journal of Neurology, Neurosurgery & Psychiatry</title>
</host>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1136/jnnp.2008.159558</json:string>
</doi>
<id>49B97A2569F830C765A297499F274B05497DC861</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/49B97A2569F830C765A297499F274B05497DC861/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/49B97A2569F830C765A297499F274B05497DC861/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/49B97A2569F830C765A297499F274B05497DC861/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Brain penetration effects of microelectrodes and DBS leads in STN or GPi</title>
<respStmt xml:id="ISTEX-API" resp="Références bibliographiques récupérées via GROBID" name="ISTEX-API (INIST-CNRS)"></respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>BMJ Publishing Group Ltd</publisher>
<availability>
<p>BMJ</p>
</availability>
<date>2009-02-22</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Brain penetration effects of microelectrodes and DBS leads in STN or GPi</title>
<author>
<persName>
<forename type="first">J M</forename>
<surname>Mann</surname>
</persName>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">K D</forename>
<surname>Foote</surname>
</persName>
<affiliation>Department of Neurosurgery, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">C W</forename>
<surname>Garvan</surname>
</persName>
<affiliation>Office of Educational Research, College of Education, University of Florida, Gainesville, Florida, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">H H</forename>
<surname>Fernandez</surname>
</persName>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">C E</forename>
<surname>Jacobson</surname>
</persName>
<roleName type="degree">IV</roleName>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">R L</forename>
<surname>Rodriguez</surname>
</persName>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">I U</forename>
<surname>Haq</surname>
</persName>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">M S</forename>
<surname>Siddiqui</surname>
</persName>
<affiliation>Department of Neurology, Wake Forest University, Winston Salem, North Carolina, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">I A</forename>
<surname>Malaty</surname>
</persName>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">T</forename>
<surname>Morishita</surname>
</persName>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">C J</forename>
<surname>Hass</surname>
</persName>
<affiliation>Department of Applied Physiology and Kinesiology, University of Florida, Movement Disorders Center, Gainesville, Florida, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">M S</forename>
<surname>Okun</surname>
</persName>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
<affiliation>Department of Neurosurgery, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Neurology, Neurosurgery & Psychiatry</title>
<title level="j" type="abbrev">J Neurol Neurosurg Psychiatry</title>
<idno type="pISSN">0022-3050</idno>
<idno type="eISSN">1468-330X</idno>
<imprint>
<publisher>BMJ Publishing Group Ltd</publisher>
<date type="published" when="2009-07"></date>
<biblScope unit="volume">80</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="794">794</biblScope>
</imprint>
</monogr>
<idno type="istex">49B97A2569F830C765A297499F274B05497DC861</idno>
<idno type="DOI">10.1136/jnnp.2008.159558</idno>
<idno type="href">jnnp-80-794.pdf</idno>
<idno type="ArticleID">jn159558</idno>
<idno type="PMID">19237386</idno>
<idno type="local">jnnp;80/7/794</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2009-02-22</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Objective: To determine how intraoperative microelectrode recordings (MER) and intraoperative lead placement acutely influence tremor, rigidity, and bradykinesia. Secondarily, to evaluate whether the longevity of the MER and lead placement effects were influenced by target location (subthalamic nucleus (STN) or globus pallidus interna (GPi)). Background: Currently most groups who perform deep brain stimulation (DBS) for Parkinson disease (PD) use MER, as well as macrostimulation (test stimulation), to refine DBS lead position. Following MER and/or test stimulation, however, there may be a resultant “collision/implantation” or “microlesion” effect, thought to result from disruption of cells and/or fibres within the penetrated region. These effects have not been carefully quantified. Methods: 47 consecutive patients with PD undergoing unilateral DBS for PD (STN or GPi DBS) were evaluated. Motor function was measured at six time points with a modified motor Unified Parkinson Disease Rating Scale (UPDRS): (1) preoperatively, (2) immediately after MER, (3) immediately after lead implantation/collision, (4) 4 months following surgery—off medications, on DBS (12 h medication washout), (5) 6 months postoperatively—off medication and off DBS (12 h washout) and (6) 6 months—on medication and off DBS (12 h washout). Results: Significant improvements in motor scores (p<0.05) (tremor, rigidity, bradykinesia) were observed as a result of MER and lead placement. The improvements were similar in magnitude to what was observed at 4 and 6 months post-DBS following programming and medication optimisation. When washed out (medications and DBS) for 12 h, UPDRS motor scores were still improved compared with preoperative testing. There was a larger improvement in STN compared with GPi following MER (p<0.05) and a trend for significance following lead placement (p<0.08) but long term outcome was similar. Conclusion: This study demonstrated significant acute intraoperative penetration effects resulting from MER and lead placement/collision in PD. Clinicians rating patients in the operating suite should be aware of these effects, and should consider pre- and post-lead placement rating scales prior to activating DBS. The collision/implantation effects were greater intraoperatively with STN compared with GPi, and with greater disease duration there was a larger effect.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>hwp-journal-coll</head>
<item>
<term>Drugs: CNS (not psychiatric)</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="keyword">
<list>
<head>hwp-journal-coll</head>
<item>
<term>Parkinson's disease</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2009-02-22">Created</change>
<change when="2009-07">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-3-14">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/49B97A2569F830C765A297499F274B05497DC861/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus bmj" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="no"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Archiving and Interchange DTD v2.3 20070202//EN" URI="archivearticle.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article" xml:lang="EN">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">jnnp</journal-id>
<journal-id journal-id-type="nlm-ta">J Neurol Neurosurg Psychiatry</journal-id>
<journal-id journal-id-type="publisher-id">jnnp</journal-id>
<journal-title>Journal of Neurology, Neurosurgery & Psychiatry</journal-title>
<abbrev-journal-title abbrev-type="publisher">J Neurol Neurosurg Psychiatry</abbrev-journal-title>
<issn pub-type="ppub">0022-3050</issn>
<issn pub-type="epub">1468-330X</issn>
<publisher>
<publisher-name>BMJ Publishing Group Ltd</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="publisher-id">jn159558</article-id>
<article-id pub-id-type="doi">10.1136/jnnp.2008.159558</article-id>
<article-id pub-id-type="other">jnnp;80/7/794</article-id>
<article-id pub-id-type="other">jnnp;jnnp.2008.159558</article-id>
<article-id pub-id-type="pmid">19237386</article-id>
<article-id pub-id-type="other">794</article-id>
<article-id pub-id-type="other">jnnp.2008.159558</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject content-type="original">Research papers</subject>
</subj-group>
<subj-group subj-group-type="hwp-journal-coll">
<subject>Drugs: CNS (not psychiatric)</subject>
</subj-group>
<subj-group subj-group-type="hwp-journal-coll">
<subject>Parkinson's disease</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Brain penetration effects of microelectrodes and DBS leads in STN or GPi</article-title>
<alt-title alt-title-type="running-head">Research paper</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Mann</surname>
<given-names>J M</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Foote</surname>
<given-names>K D</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Garvan</surname>
<given-names>C W</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Fernandez</surname>
<given-names>H H</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Jacobson</surname>
<given-names>C E</given-names>
<suffix>IV</suffix>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Rodriguez</surname>
<given-names>R L</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Haq</surname>
<given-names>I U</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Siddiqui</surname>
<given-names>M S</given-names>
</name>
<xref ref-type="aff" rid="aff4">4</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Malaty</surname>
<given-names>I A</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Morishita</surname>
<given-names>T</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Hass</surname>
<given-names>C J</given-names>
</name>
<xref ref-type="aff" rid="aff5">5</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Okun</surname>
<given-names>M S</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>Department of Neurosurgery, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Office of Educational Research, College of Education, University of Florida, Gainesville, Florida, USA</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<addr-line>Department of Neurology, Wake Forest University, Winston Salem, North Carolina, USA</addr-line>
</aff>
<aff id="aff5">
<label>5</label>
<addr-line>Department of Applied Physiology and Kinesiology, University of Florida, Movement Disorders Center, Gainesville, Florida, USA</addr-line>
</aff>
<author-notes>
<corresp>Dr M S Okun, Department of Neurology, McKnight Brain Institute, National Parkinson Foundation, 100 S Newell Dr, Room L3-101, Department of Neurology, Gainesville, FL 32610, USA;
<email xlink:type="simple">okun@neurology.ufl.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>7</month>
<year>2009</year>
</pub-date>
<pub-date pub-type="epub-original">
<day>22</day>
<month>2</month>
<year>2009</year>
</pub-date>
<pub-date pub-type="epub">
<day>22</day>
<month>2</month>
<year>2009</year>
</pub-date>
<volume>80</volume>
<volume-id pub-id-type="other">80</volume-id>
<volume-id pub-id-type="other">80</volume-id>
<issue>7</issue>
<issue-id pub-id-type="other">jnnp;80/7</issue-id>
<issue-id pub-id-type="other">7</issue-id>
<issue-id pub-id-type="other">80/7</issue-id>
<fpage>794</fpage>
<history>
<date date-type="received">
<day>30</day>
<month>7</month>
<year>2008</year>
</date>
<date date-type="rev-recd">
<day>11</day>
<month>11</month>
<year>2008</year>
</date>
<date date-type="accepted">
<day>1</day>
<month>1</month>
<year>2009</year>
</date>
</history>
<permissions>
<copyright-statement>2009 BMJ Publishing Group</copyright-statement>
<copyright-year>2009</copyright-year>
</permissions>
<self-uri content-type="pdf" xlink:role="full-text" xlink:href="jnnp-80-794.pdf"></self-uri>
<abstract>
<sec>
<title>Objective:</title>
<p>To determine how intraoperative microelectrode recordings (MER) and intraoperative lead placement acutely influence tremor, rigidity, and bradykinesia. Secondarily, to evaluate whether the longevity of the MER and lead placement effects were influenced by target location (subthalamic nucleus (STN) or globus pallidus interna (GPi)).</p>
</sec>
<sec>
<title>Background:</title>
<p>Currently most groups who perform deep brain stimulation (DBS) for Parkinson disease (PD) use MER, as well as macrostimulation (test stimulation), to refine DBS lead position. Following MER and/or test stimulation, however, there may be a resultant “collision/implantation” or “microlesion” effect, thought to result from disruption of cells and/or fibres within the penetrated region. These effects have not been carefully quantified.</p>
</sec>
<sec>
<title>Methods:</title>
<p>47 consecutive patients with PD undergoing unilateral DBS for PD (STN or GPi DBS) were evaluated. Motor function was measured at six time points with a modified motor Unified Parkinson Disease Rating Scale (UPDRS): (1) preoperatively, (2) immediately after MER, (3) immediately after lead implantation/collision, (4) 4 months following surgery—off medications, on DBS (12 h medication washout), (5) 6 months postoperatively—off medication and off DBS (12 h washout) and (6) 6 months—on medication and off DBS (12 h washout).</p>
</sec>
<sec>
<title>Results:</title>
<p>Significant improvements in motor scores (p<0.05) (tremor, rigidity, bradykinesia) were observed as a result of MER and lead placement. The improvements were similar in magnitude to what was observed at 4 and 6 months post-DBS following programming and medication optimisation. When washed out (medications and DBS) for 12 h, UPDRS motor scores were still improved compared with preoperative testing. There was a larger improvement in STN compared with GPi following MER (p<0.05) and a trend for significance following lead placement (p<0.08) but long term outcome was similar.</p>
</sec>
<sec>
<title>Conclusion:</title>
<p>This study demonstrated significant acute intraoperative penetration effects resulting from MER and lead placement/collision in PD. Clinicians rating patients in the operating suite should be aware of these effects, and should consider pre- and post-lead placement rating scales prior to activating DBS. The collision/implantation effects were greater intraoperatively with STN compared with GPi, and with greater disease duration there was a larger effect.</p>
</sec>
</abstract>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Brain penetration effects of microelectrodes and DBS leads in STN or GPi</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Brain penetration effects of microelectrodes and DBS leads in STN or GPi</title>
</titleInfo>
<name type="personal">
<namePart type="given">J M</namePart>
<namePart type="family">Mann</namePart>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K D</namePart>
<namePart type="family">Foote</namePart>
<affiliation>Department of Neurosurgery, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C W</namePart>
<namePart type="family">Garvan</namePart>
<affiliation>Office of Educational Research, College of Education, University of Florida, Gainesville, Florida, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H H</namePart>
<namePart type="family">Fernandez</namePart>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C E</namePart>
<namePart type="family">Jacobson</namePart>
<namePart type="termsOfAddress">IV</namePart>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R L</namePart>
<namePart type="family">Rodriguez</namePart>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">I U</namePart>
<namePart type="family">Haq</namePart>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M S</namePart>
<namePart type="family">Siddiqui</namePart>
<affiliation>Department of Neurology, Wake Forest University, Winston Salem, North Carolina, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">I A</namePart>
<namePart type="family">Malaty</namePart>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Morishita</namePart>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C J</namePart>
<namePart type="family">Hass</namePart>
<affiliation>Department of Applied Physiology and Kinesiology, University of Florida, Movement Disorders Center, Gainesville, Florida, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M S</namePart>
<namePart type="family">Okun</namePart>
<affiliation>Department of Neurology, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
<affiliation>Department of Neurosurgery, University of Florida College of Medicine/Shands Hospital, Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article"></genre>
<subject>
<genre>hwp-journal-coll</genre>
<topic>Drugs: CNS (not psychiatric)</topic>
</subject>
<subject>
<genre>hwp-journal-coll</genre>
<topic>Parkinson's disease</topic>
</subject>
<originInfo>
<publisher>BMJ Publishing Group Ltd</publisher>
<dateIssued encoding="w3cdtf">2009-07</dateIssued>
<dateCreated encoding="w3cdtf">2009-02-22</dateCreated>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Objective: To determine how intraoperative microelectrode recordings (MER) and intraoperative lead placement acutely influence tremor, rigidity, and bradykinesia. Secondarily, to evaluate whether the longevity of the MER and lead placement effects were influenced by target location (subthalamic nucleus (STN) or globus pallidus interna (GPi)). Background: Currently most groups who perform deep brain stimulation (DBS) for Parkinson disease (PD) use MER, as well as macrostimulation (test stimulation), to refine DBS lead position. Following MER and/or test stimulation, however, there may be a resultant “collision/implantation” or “microlesion” effect, thought to result from disruption of cells and/or fibres within the penetrated region. These effects have not been carefully quantified. Methods: 47 consecutive patients with PD undergoing unilateral DBS for PD (STN or GPi DBS) were evaluated. Motor function was measured at six time points with a modified motor Unified Parkinson Disease Rating Scale (UPDRS): (1) preoperatively, (2) immediately after MER, (3) immediately after lead implantation/collision, (4) 4 months following surgery—off medications, on DBS (12 h medication washout), (5) 6 months postoperatively—off medication and off DBS (12 h washout) and (6) 6 months—on medication and off DBS (12 h washout). Results: Significant improvements in motor scores (p<0.05) (tremor, rigidity, bradykinesia) were observed as a result of MER and lead placement. The improvements were similar in magnitude to what was observed at 4 and 6 months post-DBS following programming and medication optimisation. When washed out (medications and DBS) for 12 h, UPDRS motor scores were still improved compared with preoperative testing. There was a larger improvement in STN compared with GPi following MER (p<0.05) and a trend for significance following lead placement (p<0.08) but long term outcome was similar. Conclusion: This study demonstrated significant acute intraoperative penetration effects resulting from MER and lead placement/collision in PD. Clinicians rating patients in the operating suite should be aware of these effects, and should consider pre- and post-lead placement rating scales prior to activating DBS. The collision/implantation effects were greater intraoperatively with STN compared with GPi, and with greater disease duration there was a larger effect.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Neurology, Neurosurgery & Psychiatry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J Neurol Neurosurg Psychiatry</title>
</titleInfo>
<genre type="Journal">journal</genre>
<identifier type="ISSN">0022-3050</identifier>
<identifier type="eISSN">1468-330X</identifier>
<identifier type="PublisherID">jnnp</identifier>
<identifier type="PublisherID-hwp">jnnp</identifier>
<identifier type="PublisherID-nlm-ta">J Neurol Neurosurg Psychiatry</identifier>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>80</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>794</start>
</extent>
</part>
</relatedItem>
<identifier type="istex">49B97A2569F830C765A297499F274B05497DC861</identifier>
<identifier type="DOI">10.1136/jnnp.2008.159558</identifier>
<identifier type="href">jnnp-80-794.pdf</identifier>
<identifier type="ArticleID">jn159558</identifier>
<identifier type="PMID">19237386</identifier>
<identifier type="local">jnnp;80/7/794</identifier>
<accessCondition type="use and reproduction" contentType="copyright">2009 BMJ Publishing Group</accessCondition>
<recordInfo>
<recordContentSource>BMJ</recordContentSource>
</recordInfo>
</mods>
</metadata>
<annexes>
<json:item>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<extension>jpeg</extension>
<uri>https://api.istex.fr/document/49B97A2569F830C765A297499F274B05497DC861/annexes/jpeg</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A51 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000A51 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:49B97A2569F830C765A297499F274B05497DC861
   |texte=   Brain penetration effects of microelectrodes and DBS leads in STN or GPi
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 18:06:51 2016. Site generation: Wed Mar 6 18:46:03 2024